Sign up
Forgot password?
FAQ: Login

Joshi G. Optimization Algorithms for Distributed Machine Learning

  • pdf file
  • size 4,48 MB
  • added by
  • info modified
Joshi G. Optimization Algorithms for Distributed Machine Learning
Springer, 2022. — 136 p. — (Synthesis Lectures on Learning, Networks, and Algorithms). — ISBN: 3031190661.
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
True PDF
  • Sign up or login using form at top of the page to download this file.
  • Sign up
Up