Sign up
Forgot password?
FAQ: Login

Santikellur P., Chakraborty R.S. Deep Learning for Computational Problems in Hardware Security

  • pdf file
  • size 3,16 MB
  • added by
  • info modified
Santikellur P., Chakraborty R.S. Deep Learning for Computational Problems in Hardware Security
Springer, 2022. — 92 p. — (Studies in Computational Intelligence 1052). — ISBN13: 9789811940163.
The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and the application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.
Introduction to Machine Learning for Hardware Security.
Physically Unclonable Functions.
Machine-Learning Basics.
Modeling Attacks on PUF.
Improved Modeling Attack on PUFs based on Tensor Regression Network.
Combinational Logic-Based Implementation of PUF.
  • Sign up or login using form at top of the page to download this file.
  • Sign up
Up