BPB Publications, 2021 — 270 p. — ISBN: 8194837758.
Refuel your AI Models and ML applications with High-Quality Optimization and Search Solutions.
Key FeaturesComplete coverage on the practical implementation of genetic algorithms.
Intuitive explanations and visualizations supply theoretical concepts.
Added examples and use-cases on the performance of genetic algorithms.
Use of Python libraries and a niche coverage on the performance optimization of genetic algorithms.
DescriptionGenetic algorithms are one of the most straightforward and powerful techniques used in machine learning. This book ‘Learning Genetic Algorithms with Python’ guides the reader right from the basics of genetic algorithms to their real practical implementation in production environments.
Each of the chapters gives the reader an intuitive understanding of each concept. You will learn how to build a genetic algorithm from scratch and implement it in real-life problems. Covered with practical illustrated examples, you will learn to design and choose the best model architecture for particular tasks. Cutting-edge examples like radar and football manager problem statements, you will learn to solve high-dimensional big data challenges with ways of optimizing genetic algorithms.
What you will learnUnderstand the mechanism of genetic algorithms using popular python libraries.
Learn the principles and architecture of genetic algorithms.
Apply and Solve planning, scheduling, and analytics problems in Enterprise applications.
Expert learning on prime concepts like Selection, Mutation, and Crossover.
Who this book is forThe book is for the Data Science team, Analytics team, AI Engineers, ML Professionals who want to integrate genetic algorithms to refuel their ML and AI applications. No special expertise in machine learning is required although basic knowledge of Python is expected.