Sign up
Forgot password?
FAQ: Login

Grus Joel. Data Science from Scratch: First Principles with Python

  • zip file
  • size 3,25 MB
  • contains mobi document(s)
Grus Joel. Data Science from Scratch: First Principles with Python
O’Reilly Media, Inc., 2015. — 308 p. — ISBN: 978-1-491-90142-7.
Data scientist has been called the sexiest job of the 21st century, presumably by someone who has never visited a fire station. Nonetheless, data science is a hot and growing field, and it doesn’t take a great deal of sleuthing to find analysts breathlessly prognosticating that over the next 10 years, we’ll need billions and billions more data scientists than we currently have.
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
- Get a crash course in Python
- Learn the basics of linear algebra, statistics, and probability — and understand how and when they're used in data science
- Collect, explore, clean, munge, and manipulate data
- Dive into the fundamentals of machine learning
- Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
- Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  • Sign up or login using form at top of the page to download this file.
  • Sign up
Up