Technical University of Darmstadt, 2016. — 132 p.
The ability of robots to perform tasks in human environments has largely been limited to rather simple and specific tasks, such as lawn mowing and vacuum cleaning. As such, current robots are far away from the robot butlers, assistants, and housekeepers that are depicted in science fiction movies. Part of this gap can be explained by the fact that human environments are hugely varied, complex and unstructured. For example, the homes that a domestic robot might end up in are hugely varied. Since every home has a different layout with different objects and furniture, it is impossible for a human designer to anticipate all challenges a robot might face, and equip the robot a priori with all the necessary perceptual and manipulation skills.
Instead, robots could be programmed in a way that allows them to adapt to any environment that they are in. In that case, the robot designer would not need to precisely anticipate such environments. The ability to adapt can be provided by robot learning techniques, which can be applied to learn skills for perception and manipulation. Many of the current robot learning techniques, however, rely on human supervisors to provide annotations or demonstrations, and to fine-tuning the methods parameters and heuristics. As such, it can require a significant amount of human time investment to make a robot perform a task in a novel environment, even if statistical learning techniques are used.
In this thesis, I focus on another way of obtaining the data a robot needs to learn about the environment and how to successfully perform skills in it. By exploring the environment using its own sensors and actuators, rather than passively waiting for annotations or demonstrations, a robot can obtain this data by itself. I investigate multiple approaches that allow a robot to explore its environment autonomously, while trying to minimize the design effort required to deploy such algorithms in different situations.