Translated from the second german edition. — London: His Majesty’s Stationery Office, 1921. — 494 p. (Handbook of Ballistics. Vol. I)
Exterior ballistics being a theoretical examination of the motion of the projectile from the muzzle to the target.
The motion of a projectile in a vacuumThe parabolic trajectory
Family of trajectories with constant initial velocity
Family of trajectories with constant angle of departure
Fire over sloping ground
Examples
Trajectory in a vacuum, taking into account the decrease of gravity with the altitude, and the convergence of vertical lines owing to the curvature of the earth
Formulae
The resistance of the airAir-resistance to an elongated shell on the assumption that its axis lies in the direction of motion of the centre of gravityGeneral considerations
Theoretical considerations of the law of air-resistance
Empirical laws of air-resistance
Experimental methods
On the influence of the skew position of the shell on the direction of motion of the centre of gravity.General equations
Calculations relating to the shape of the shell head.The coefficient of form-value
The most suitable shape of head
The density of the airCalculation of the density
Critical remarks
Problems relating to the trajectoryThe general equations and their integrability
An inversion problem
General properties of the trajectory
First group of calculations in the approximate solution of the ballistic problem. Approximate solution of the differential equationsThe integrability of the equations
Method of Euler-Otto
Method of Bashforth
Method of development in series
Second group of numerical methods of approximation. Exact solution of an approximate equationGeneral considerations
Solution of J. Didion
Bernoulli-Didion method
Method of Siacci
The Krupp-Gross method
Siacci’s other methods
Vallier’s method
Charbonnier’s solution
The secondary ballistic functions
Graphical methods of solution
Investigation of modern methods of calculationThe accuracy of various methods
Practical applications
The effects of the law of air-resistance
The high angle trajectory, and the method of swinging the trajectoryCalculation of a high angle trajectoryMotion of a shell in a vertical line
Shooting nearly vertical
Calculation of high angle trajectories
On the tilting of the trajectoryThe ordinary procedure of tilting the trajectory
The method of Burgsdorff and Gouin
Percin’s method
Solution of various trajectories. Employment of experimental results for the construction of range tablesSolution of problems by means of Table 12, Vol. IV
The use of other tables
Practical applications of the calculation of range tables
Lateral deviations of a shellGeneral considerations
The effects of small changes in the initial velocity, etc.
Deviations due to various causes
Deviations due to the wind
Deviation due to rotation of the earth
Deviation of bullets with bayonet fixed to the rifle
Lateral deviations due to rotation of the shellDeviations of spherical shells
Deviation of a rotating elongated shell
The flight of a rotating shell
Explanations of the drift
Precession and nutation
Curvilinear motion of the centre of gravity
The drift of a rotating shell
Experimental demonstrations
Accidental deviationsApplication of the Theory of Probability to Ballistics
The propositions of Bernoulli-Laplace, Poisson and Bayes
Theory of the scattering of projectiles
True and apparent deviations
Successive differences
Recapitulation of results
Calculation of the arithmetic mean in grouped observations
Axes of symmetry of target-diagram
The axes of the target-diagram
The probability of hitting a given area
Probability of hitting a given circular area
Probability of hitting a given elliptical target
Gauss’s method of least squares
On the explosive effects of shellsPenetration of projectile into a rigid body
Depth of penetration
Effects of shell bursts
Penetration of shells into water
Deflection from the normal trajectory
Gauss’s method of least squares
Notes and appendix
General index
Photographic records