R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: * Create artful graphs to visualize complex data sets and functions * Write more efficient code using parallel R and vectorization * Interface R with C/C++ and Python for increased speed or functionality * Find new packages for text analysis, image manipulation, and thousands more * Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
Sign up or login using form at top of the page to download this file.
Springer, 2012. — 374 p. — (Series "Use R!"). — ISBN: 1461413648, 9781461413653. R by Example is an example-based introduction to the statistical computing environment that does not assume any previous familiarity with R or other software packages. R functions are presented in the context of interesting applications with real data. The purpose of this book is to illustrate a...
O’Reilly Media – 2013, 416 p. ISBN: 1449316956, 9781449316952 This practical guide provides more than 150 recipes to help you generate high-quality graphs quickly, without having to comb through all the details of R’s graphing systems. Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe...
MIT Press, 2016. — 802 p. A comprehensive introduction to neural networks and deep learning by leading researchers of this field. Written for two main target audiences: university students (undergraduate or graduate) learning about machine learning, and software engineers. This is a PDF compilation of online book (www.deeplearningbook.org) Who Should Read This Book? Historical...
Academic Press, 2009. — 864 p. — ISBN: 0123747651. Robert Nisbet, Pacific Capital Bank Corporation, Santa Barbara, CA, USA John Elder, Elder Research, Inc. and the University of Virginia, Charlottesville, USA Gary Miner, StatSoft, Inc. , Tulsa, OK, USA Description The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book...
O’Reilly Media, 2011. — 436 p. — ISBN: 0596809158. With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with...
CRC Press, 2014. — 476 p. — 1466586966, 9781466586963. Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to...