Kluwer, 2004, -146 p.
The advances in new information technology and media encourage deployment of multi-modal information systems with increasing ubiquity. These systems demand techniques for processing information beyond text, such as visual and audio information. Among the visual information, human faces provide important cues of human activities. Thus they are useful for human-human communication, human-computer interaction (HCI) and intelligent video surveillance. 3D face processing techniques would enable (1) extracting information about the person’ s identity, motions and states from images of face in arbitrary poses; and (2) visualizing information using synthetic face animation for more natural human computer interaction. These aspects will help an intelligent information system interpret and deliver facial visual information, which is useful for effective interaction and automatic video surveillance.
In the last few decades, many interesting and promising approaches have been proposed to investigate various aspects of 3D face processing, although all these areas are still subject of active research. This book introduces the frontiers of 3D face processing techniques. It reviews existing 3D face processing techniques, including techniques for 3D face geometry modeling, 3D face motion modeling, 3D face motion tracking and animation. Then it discusses a unified framework for face modeling, analysis and synthesis. In this framework, we first describe techniques for modeling static 3D face geometry in Chapter 2_. Next, in Chapter 3 we present our geometric facial motion model derived from motion capture data. Then we discuss the geometric-model-based 3D face tracking and animation in Chapter 4 and Chapter 5, respectively. Experimental results on very low bit-rate face video coding, real-time speech-driven animation are reported to demonstrate the efficacy of the geometric motion model. Because important appearance details are lost in the geometric motion model, we present a flexible appearance model in Chapter 6 to enhance the framework. We use efficient and effective methods to reduce the appearance model’ s dependency on illumination and person. Then, in Chapter 7 and Chapter 8 we present experimental results to show the effectiveness of the flexible appearance model in face analysis and synthesis. In Chapter 9, we describe applications in which we apply the framework. Finally, we conclude this book with summary and comments on future work in 3D face processing framework.
3D Face Modeling
Learning Geometric 3D Facial Motion Model
Geometric Model-Based 3D Face Tracking
Geometric Facial Motion Synthesis
Flexible Appearance Model
Facial Motion Analysis Using Flexible Appearance Model
Face Appearance Synthesis Using Flexible Appearance Model
Application Examples of the Face Processing Framework
Conclusion and Future Work